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ABSTRACT1

Rhythm-based video games challenge players to match2

their actions with musical cues, turning songs into inter-3

active experiences. The design of the game charts, which4

dictate the timing and placement of on-screen notes, are5

manually crafted by players and developers. With Au-6

toOsu, we introduce a CRNN-based model for generating7

rhythm game charts for a given audio track, conditioned on8

an intended difficulty level. In previous studies, this task is9

often divided into two: onset detection, which determines10

timing points for notes; and action generation, where notes11

are distributed among a set of available keys. These two12

sub-tasks are typically handled with two separately trained13

models, and audio information is only given to the onset14

detection model. We instead jointly train the two recurrent15

layers who both receive audio information, which stream-16

lines the training process and helps better utilize musical17

features.18

1. INTRODUCTION19

Rhythm games are a popular genre of modern video games.20

The gameplay of most rhythm games involves the player21

hitting specific keys at precise timings according to the22

notes that appear on the screen, the sequence of which23

is often called a chart. The charts are manually created24

by game developers or community members to follow the25

rhythmic and melodic structures of a song. By invoking a26

sense of moving along to the music, rhythm games provide27

players with a new and entertaining way of experiencing28

songs they like.29

As a machine learning task, generating charts for30

rhythm games from a given audio input of music can be31

regarded as similar to music onset detection [1] and auto-32

matic music transcription [2]. However, a key difference33

is that there is no definitive answer for how one should34

chart for a given music track; a model needs to learn a wide35

range of idiosyncratic patterns in charts that are rooted in36

the physicality of how the games are played, the conven-37

tional note combinations used by the community, and how38
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Figure 1. osu! mania gameplay. Notes fall down onto the
line at the bottom, and the player has to hit the correspond-
ing keys at the correct time.

chart creators tend to interpret different musical features39

of a song. In this sense, the task can also be regarded as40

conditional symbolic music generation.41

In previous studies, this task is typically decomposed42

into two and handled with separate models. Donahue et43

al. [3] name the two sub-tasks step placement and step se-44

lection. In the former, the precise timing points of notes45

are determined—a process analogous to onset detection.46

In the latter, the notes are then distributed among a set of47

keys the player can hit. Liang et al. [4] adopt a similar 2-48

step approach composed of timestep generation and action49

type generation. For clarity, we define these two problems50

as onset detection and action generation.51

In both studies mentioned above, the audio information52

is utilized by the onset detection model alone, and the ac-53

tion generation model is only conditioned on the time dif-54

ference between the previous and the current note. In this55

research, we instead jointly train the two models and pro-56

vide audio context to both modules, simplifying the train-57

ing pipeline and fully utilizing the musical features ex-58

tracted from audio tracks.59

2. DATA60

We focus on osu! mania, one of the game modes of the61

popular rhythm game "osu!", presented in Figure 1. Con-62

tent for osu! is mainly produced by community members,63



Number of songs 400 (16.4 hrs)
Avr. song length 148 secs
Number of charts 1,126
Notes / chart 676.54

Table 1. Dataset statistics

who create charts for songs and upload them to the game’s64

database. Among the publicly available charts, we col-65

lected 400 songs to compose the dataset, handpicking them66

to maintain balance in genre and difficulty. Statistics of the67

dataset are provided on Table 1.68

3. METHOD69

3.1 Feature Extraction70

We extract raw audio tracks from charts in the dataset. To71

preserve a wider range of low and high-level musical fea-72

tures, we perform multiple timescale short-time Fourier73

transforms in window lengths of 23ms, 46ms, and 93ms74

[5]. We use a stride of 10ms, creating a grid of time frames75

to which the inputs and outputs of all of the model’s com-76

ponents are aligned.77

Following [3], we compute rhythmic information for78

each time frame: 1) Beat number, an integer that denotes79

the beat in a measure that contains the time step; and 2)80

Beat phase, representing the fraction of a beat at which the81

time step occurs. For this, we assume that all audio tracks82

are of consistent tempo and in a time signature of 4/4.83

For action generation, we focus on the 4-key mode of84

osu! mania. Each of the four keys can be assigned one85

of the following actions at any time: no note, normal note,86

hold start, and hold end. This results in a total of 44 = 25687

possible action tokens for each time step.88

To condition chart generation on an intended difficulty89

level, we collect the star rating of each chart, which is an90

objective difficulty measure determined by the game’s in-91

ternal logic. We limit the dataset to only contain charts of92

difficulty levels lower than 4.0.93

3.2 Model Architecture94

As presented in Figure 2, the model comprises a stack95

of convolution layers for processing audio, a bidirectional96

Gated Recurrent Unit (GRU) [6] for onset detection, and an97

auto-regressive unidirectional GRU for action generation,98

which resembles an auto-regressive model for piano music99

transcription [7]. The arriving spectrogram is forwarded100

through the convolution stack with a gradual increase in101

the channel dimension and then flattened along the channel102

and frequency dimensions. While preserving the temporal103

dimension, we concatenate the following tensors to the au-104

dio representation: beat number embeddings, beat phase105

embeddings, and difficulty projection, which is produced106

by feeding a difficulty scalar into a multilayer perceptron.107

The resulting concatenated tensor is used as input for both108

GRUs.109

Figure 2. Overall model architecture

Additionally, the action generation GRU receives the110

output of the onset detection GRU as part of its input. It111

also receives the predicted action token from the previous112

time step, making it the only autoregressive layer in the113

model. Since the vast majority of ground-truth time steps114

contain no notes, we utilize binary and multi-class focal115

loss [8] for onset detection and action generation, respec-116

tively, to mitigate class imbalance.117

4. RESULTS118

We compare the proposed model against a control model,119

which only utilizes audio context during onset detection.120

While the two models show no significant difference in121

quantitative metrics, such as perplexity on the validation122

set, we found that the generated charts by the proposed123

model excel in aligning special patterns (hold notes, com-124

pound notes) with salient musical events.125

By inputting an audio track along with manual anno-126

tation on tempo and the offset for the first downbeat, the127

model can be used to perform inference with arbitrary128

songs. For annotation, we use the tap-tempo feature in-129

cluded in osu!, since it also calculates offset along with130

tempo. Further examples and demos are provided in the131

link 1 . We also share the dataset, source code, and model132

weights 2 .133

1 https://issyun.github.io/autoosu
2 https://github.com/issyun/AutoOsu
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